New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

STP12NK80Z - STB12NK80Z STW12NK80Z

N-CHANNEL 800V - 0.65Ω - 10.5A TO-220 / D²PAK / TO-247 Zener-Protected SuperMESH™Power MOSFET

ТҮРЕ	V _{DSS}	R _{DS(on)}	١ _D	Pw
STP12NK80Z	800 V	< 0.75 Ω	10.5 A	190 W
STB12NK80Z	800 V	< 0.75 Ω		190 W
STW12NK80Z	800 V	< 0.75 Ω		190 W

- TYPICAL $R_{DS}(on) = 0.65 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- GATE CHARGE MINIMIZED
- VERY LOW INTRINSIC CAPACITANCES
- VERY GOOD MANUFACTURING REPEATIBILITY

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- IDEAL FOR OFF-LINE POWER SUPPLIES

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

STP12NK80Z - STB12NK80Z - STW12NK80Z

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	800	V
V _{DGR}	Drain-gate Voltage (R_{GS} = 20 k Ω)	800	V
V _{GS}	Gate- source Voltage	± 30	V
ID	Drain Current (continuous) at $T_C = 25^{\circ}C$	10.5	A
ID	Drain Current (continuous) at T _C = 100°C	6.6	A
I _{DM} (•)	Drain Current (pulsed)	42	A
Ртот	Total Dissipation at T _C = 25°C	190	W
	Derating Factor	1.51	W/°C
V _{ESD(G-S)}	Gate source ESD(HBM-C=100pF, R=1.5KΩ)	6000	V
dv/dt (1)	Peak Diode Recovery voltage slope	4.5	V/ns
⊤ _j T _{stg}	Operating Junction Temperature Storage Temperature	-55 to 150	°C

(•) Pulse width limited by safe operating area

(1) $I_{SD} \le 10.5A$, di/dt $\le 200A/\mu s$, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$.

(*) Limited only by maximum temperature allowed

THERMAL DATA

		TO-220/ D ² PAK	TO-247	
Rthj-case	Thermal Resistance Junction-case Max	0.66	6	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5	50	°C/W
ΤI	Maximum Lead Temperature For Soldering Purpose	300		°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	10.5	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	400	mJ

GATE-SOURCE ZENER DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Ünit
BV _{GSO}	Gate-Source Breakdown Voltage	lgs=± 1mA (Open Drain)	30			V

PROTECTION FEATURES OF GATE-TO-SOURCE ZENER DIODES

The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED) ON/OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	i _D = 1 mA, V _{GS} = 0	800			V
IDSS	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating, T _C = 125 °C			1 50	μΑ μΑ
IGSS	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±10	μA
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 100 \ \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 5.25 A		0.65	0.75	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} = 15 V, I _D = 5.25 A		12		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		2620 250 53		pF pF pF
C _{oss eq.} (3)	Equivalent Output Capacitance	$V_{GS} = 0V$, $V_{DS} = 0V$ to 640V		100		pF

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$V_{DD} = 400 \text{ V}, I_D = 5.25 \text{ A}$ $R_G = 4.7\Omega \text{ V}_{GS} = 10 \text{ V}$ (Resistive Load see, Figure 3)		30 18		ns ns
Qg Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 640V, I _D = 10.5 A, V _{GS} = 10V		87 14 44		nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$\label{eq:VDD} \begin{array}{l} V_{DD} = 400 \text{ V}, \text{ I}_{D} = 5.25 \text{ A} \\ R_{G} = 4.7\Omega \text{ V}_{GS} = 10 \text{ V} \\ (\text{Resistive Load see, Figure 3}) \end{array}$		70 20		ns ns
t _{r(Voff)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	$\label{eq:VDD} \begin{array}{l} V_{DD} = 640 \ V, \ I_D = 10.5 \ A, \\ R_G = 4.7 \Omega, \ V_{GS} = 10 V \\ (Inductive \ Load \ see, \ Figure \ 5) \end{array}$		16 15 28		ns ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (2)	Source-drain Current Source-drain Current (pulsed)				10.5 42	A A
V _{SD} (1)	Forward On Voltage	I _{SD} = 10.5 A, V _{GS} = 0			1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 10.5 A, di/dt = 100A/µs V_{DD} = 100 V, T _j = 150°C (see test circuit, Figure 5)		635 5.9 18.5		ns µC A

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.
3. C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% VDSS.