

# P-Channel Enhancement-Mode Vertical DMOS FET Quad Array

### **Ordering Information**

| BV <sub>DSS</sub> / | R <sub>DS (ON)</sub> Max | Order Number / Package |  |  |  |  |
|---------------------|--------------------------|------------------------|--|--|--|--|
| BV <sub>DGS</sub>   | 20 (0)                   | SOW-20*                |  |  |  |  |
| -40V                | $2.0\Omega$              | TP0604WG               |  |  |  |  |

<sup>\*</sup> Same as SO-20 with 300 mil wide body.

#### **Features**

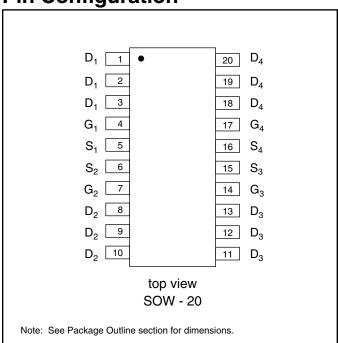
- 4 independent channels
- ☐ 4 electrically isolated die
- Commercial and Military versions available
- Free from secondary breakdown
- Low power drive requirement
- Low C<sub>ISS</sub> and fast switching speeds
- High input impedance and high gain

### **Applications**

- □ Telecom switches
- Logic level interfaces
- Battery operated systems
- □ Photo voltaic drives
- Soild state relays
- Motor controls

# **Absolute Maximum Ratings**

| Drain-to-Source Voltage           | $BV_{DSS}$        |
|-----------------------------------|-------------------|
| Drain-to-Gate Voltage             | BV <sub>DGS</sub> |
| Gate-to-Source Voltage            | ± 20V             |
| Operating and Storage Temperature | -55°C to +150°C   |
| Soldering Temperature*            | 300°C             |


<sup>\*</sup> Distance of 1.6 mm from case for 10 seconds.

# **Advanced DMOS Technology**

These enhancement-mode (normally-off) DMOS FET arrays utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex quad arrays use four independent DMOS transistors. They are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

### **Pin Configuration**

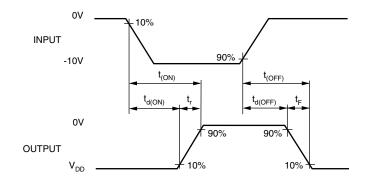


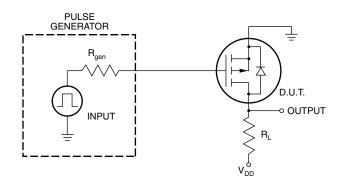
### 02/26/03

# **Thermal Characteristics**

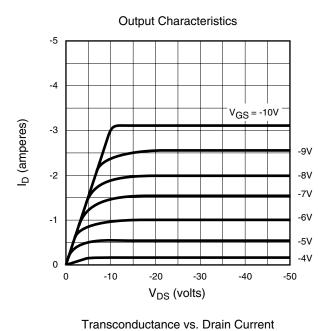
| Package | I <sub>D</sub> (continuous)*<br>(single die) | I <sub>D</sub> (pulsed) | Power Dissipation<br>@ T <sub>A</sub> = 25°C | $	heta_{	extsf{jc}}$ $^{\circ}$ C/W | $	heta_{	extsf{ja}}$ $^{\circ}$ C/W | I <sub>DR</sub> *<br>(single die) | I <sub>DRM</sub> |
|---------|----------------------------------------------|-------------------------|----------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|------------------|
| SOW-20  | -0.6A                                        | -2.0A                   | 1.5W                                         | _                                   | 84                                  | -0.6A                             | -2.0A            |

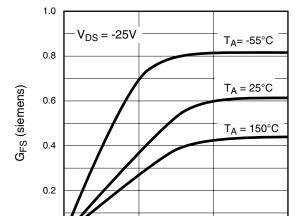
 $<sup>^*</sup>$  I<sub>D</sub> (continuous) is limited by max rated T<sub>i.</sub>


# Electrical Characteristics (@ 25°C unless otherwise specified)

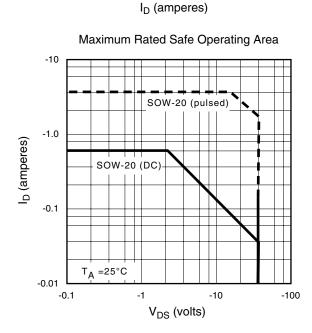

| Symbol              | Parameter                                      | Min  | Тур  | Max  | Unit  | Conditions                                               |  |
|---------------------|------------------------------------------------|------|------|------|-------|----------------------------------------------------------|--|
| BV <sub>DSS</sub>   | Drain-to-Source<br>Breakdown Voltage           | -40  |      |      | V     | $V_{GS} = 0V$ , $I_D = -2.0$ mA                          |  |
| V <sub>GS(th)</sub> | Gate Threshold Voltage                         | -1.0 |      | -2.4 | V     | $V_{GS} = V_{DS}$ , $I_D = -1.0$ mA                      |  |
| $\Delta V_{GS(th)}$ | Change in V <sub>GS(th)</sub> with Temperature |      | -3.0 | -4.5 | mV/°C | $V_{GS} = V_{DS}$ , $I_D = -1.0$ mA                      |  |
| I <sub>GSS</sub>    | Gate Body Leakage                              |      |      | -100 | nA    | $V_{GS} = \pm 20V, V_{DS} = 0V$                          |  |
| I <sub>DSS</sub>    | Zero Gate Voltage Drain Current                |      |      | -10  | μΑ    | $V_{GS} = 0V$ , $V_{DS} = Max$ Rating                    |  |
|                     |                                                |      |      | -1.0 | mA    | $V_{GS} = 0V$ , $V_{DS} = 0.8$ Max Rating $T_A = 125$ °C |  |
| I <sub>D(ON)</sub>  | ON-State Drain Current                         | -0.4 | -0.6 |      | Α     | $V_{GS} = -5V, V_{DS} = -20V$                            |  |
|                     |                                                | -2.0 | -3.3 |      |       | $V_{GS} = -10V, V_{DS} = -20V$                           |  |
| R <sub>DS(ON)</sub> | Static Drain-to-Source                         |      | 2.0  | 3.5  | Ω     | $V_{GS} = -5V, I_D = -250mA$                             |  |
|                     | ON-State Resistance                            |      | 1.5  | 2.0  |       | $V_{GS} = -10V, I_D = -1.0A$                             |  |
| $\Delta R_{DS(ON)}$ | Change in R <sub>DS(ON)</sub> with Temperature |      | 0.75 | 1.2  | %/°C  | $V_{GS} = -10V, I_D = -1.0A$                             |  |
| G <sub>FS</sub>     | Forward Transconductance                       | 0.4  | 0.6  |      | Ö     | $V_{DS} = -20V, I_{D} = -1.0A$                           |  |
| C <sub>ISS</sub>    | Input Capacitance                              |      | 95   | 150  |       |                                                          |  |
| C <sub>OSS</sub>    | Common Source Output Capacitance               |      | 85   | 120  | pF    | $V_{GS} = 0V$ , $V_{DS} = -20V$<br>f = 1 MHz             |  |
| C <sub>RSS</sub>    | Reverse Transfer Capacitance                   |      | 35   | 60   |       |                                                          |  |
| t <sub>d(ON)</sub>  | Turn-ON Delay Time                             |      | 5.0  | 8    |       |                                                          |  |
| t <sub>r</sub>      | Rise Time                                      |      | 7.0  | 18   |       | $V_{DD} = -20V$ $I_{D} = -1.0A$ $R_{GEN} = 25\Omega$     |  |
| t <sub>d(OFF)</sub> | Turn-OFF Delay Time                            |      | 10   | 15   | ns    |                                                          |  |
| t <sub>f</sub>      | Fall Time                                      |      | 6.0  | 19   | 1     |                                                          |  |
| V <sub>SD</sub>     | Diode Forward Voltage Drop                     |      | -1.3 | -2.0 | V     | $V_{GS} = 0V, I_{SD} = -1.5A$                            |  |
| t <sub>rr</sub>     | Reverse Recovery Time                          |      | 300  |      | ns    | V <sub>GS</sub> = 0V, I <sub>SD</sub> = -1.5A            |  |

#### Notes

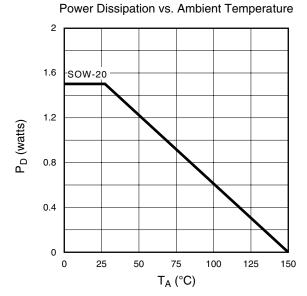

- 1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test:  $300\mu s$  pulse, 2% duty cycle.)
- 2. All A.C. parameters sample tested.


# **Switching Waveforms and Test Circuit**

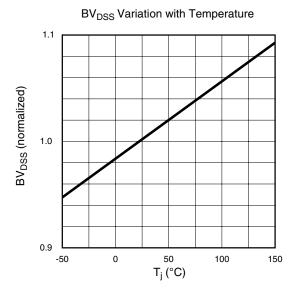


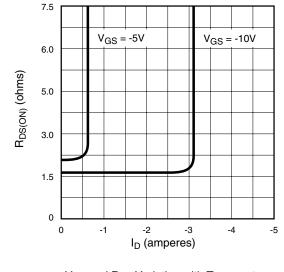



# **Typical Performance Curves**



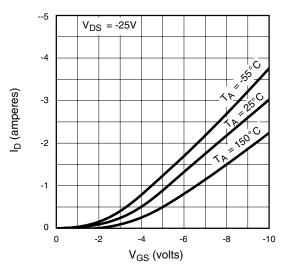


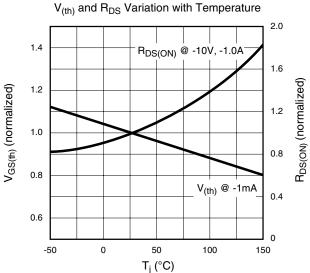


0



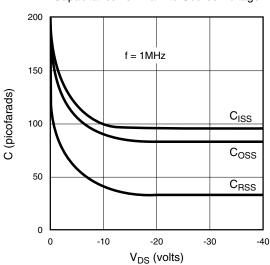


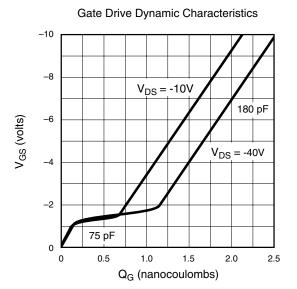




# **Typical Performance Curves**







On-Resistance vs. Drain Current








Capacitance vs. Drain-to-Source Voltage





02/26/03