TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSIII)

TPCS8204

Lithium Ion Battery Applications Notebook PC Applications Portable Equipment Applications

- Small footprint due to small and thin package
- Low drain-source ON resistance: R_{DS} (ON) = 13 m Ω (typ.)
- High forward transfer admittance: $|Y_{fs}| = 15 \text{ S} (typ.)$
- Low leakage current: $I_{DSS} = 10 \ \mu A \ (max) \ (V_{DS} = 20 \ V)$
- Enhancement-mode: $V_{th} = 0.5 \sim 1.2 \text{ V} (V_{DS} = 10 \text{ V}, \text{ID} = 200 \text{ }\mu\text{A})$

Maximum Ratings (Ta = 25°C)

Char	acteristics	Symbol	Rating	Unit	
Drain-source voltage		V _{DSS}	20	V	
Drain-gate voltag	ge (R _{GS} = 20 kΩ)	V _{DGR}	20	V	
Gate-source voltage		V _{GSS}	±12	V	
Drain current	DC (Note 1)	I _D	6	А	
Drain current	Pulse (Note 1)	$\begin{array}{c c c c c c c c } \hline V_{DSS} & 20 \\ \hline V_{DSS} & 20 \\ \hline V_{DSS} & 20 \\ \hline V_{QSS} & \pm 12 \\ \hline & V_{GSS} & \pm 12 \\ \hline & V_{GSS} & \pm 12 \\ \hline & V_{OSS} & \pm 12 \\ \hline$	~		
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	1.1		
(t = 10 s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D (2)}	0.75	W	
Drain power dissipation (t = 10 s) (Note 2b)	Single-device operation (Note 3a)	P _{D (1)}	0.6		
	Single-device value at dual operation (Note 3b)	P _{D (2)}	0.35	W	
Single pulse avalanche energy (Note 4)		E _{AS}	46.8	mJ	
Avalanche currei	nt	I _{AR}	6	А	
Repetitive avalanche energy Single-device value at dual operation (Note 2a, 3b, 5)		E _{AR}	0.075	mJ	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Weight: 0.035 g (typ.)

Circuit Configuration

Note: For (Note 1), (Note 2), (Note 3), (Note 4) and (Note 5), please refer to the next page.

This transistor is an electrostatic sensitive device. Please handle with caution.

Unit: mm

Thermal Characteristics

Characteristics	Symbol	Max	Unit		
	Single-device operation (Note 3a)	R _{th (ch-a)} (1)	114	°C/W	
Thermal resistance, channel to ambient (t = 10 s) (Note 2a)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	167		
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th (ch-a)} (1)	208		
(t = 10 s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	357	°C/W	

Marking (Note 6)

Note 2:

a) Device mounted on a glass-epoxy board (a)

Note 3:

- a) The power dissipation and thermal resistance values are shown for a single device. (During single-device operation, power is only applied to one device.)
- b) The power dissipation and thermal resistance values are shown for a single device. (During dual operation, power is evenly applied to both devices.)

Note 4: $V_{DD} = 16 \text{ V}, \text{ T}_{ch} = 25^{\circ}\text{C}$ (initial), L = 1.0 mH, R_G = 25 Ω , I_{AR} = 6 A

- Note 5: Repetitive rating; pulse width limited by maximum channel temperature
- Note 6: on lower left of the marking indicates Pin 1.

Electrical Characteristics (Ta = 25°C)

Cha	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS}=\pm 10~V,~V_{DS}=0~V$		_	±10	μA
Drain cut-OFF current		I _{DSS}	$V_{DS} = 20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	_	_	10	μA
Drain-source breakdown voltage		V (BR) DSS	$I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V}$	20	_	_	V
Diam-source bie	andown voltage	V (BR) DSX	$I_D = 10 \text{ mA}, V_{GS} = -12 \text{ V}$	8	_	_	v
Gate threshold ve	oltage	V _{th}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 200 \mu\text{A}$	0.5	_	1.2	V
Drain-source ON resistance			$V_{GS} = 2.0 \text{ V}, \text{ I}_{D} = 4.2 \text{ A}$	_	24	35	mΩ
		R _{DS (ON)}	$V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 4.2 \text{ A}$	_	18	22	
			$V_{GS} = 4.0 \text{ V}, \text{ I}_{D} = 4.8 \text{ A}$	_	13	17	
Forward transfer	admittance	Y _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 3.0 \text{ A}$	7.5	15	_	S
Input capacitance		C _{iss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz		2160	_	pF
Reverse transfer capacitance		C _{rss}			210		
Output capacitance		C _{oss}			230	_	
Switching time	Rise time	t _r	$V_{GS} \begin{array}{c} 5 \\ 0 \\ V \\ 0 \\ V \end{array} \right) I_{D} = 3 A$ V_{OUT} $G \\ G \\ G \\ M \\ V \\ M \\ V \\ DD \approx 10 V$ $V_{DUT} = 10 $	_	5	_	- ns
	Turn-ON time	t _{on}		_	13	_	
	Fall time	t _f			10		
	Turn-OFF time	t _{off}			53		
Total gate charge (gate-source plus gate-drain)		Qg			22		
Gate-source charge 1		Q _{gs1}	$V_{DD} \simeq 16 \text{ V}, \text{ V}_{GS} = 5 \text{ V}, \text{ I}_{D} = 6 \text{ A}$	_	4	_	nC
Gate-drain ("miller") charge		Q _{gd}			5	_	

Source-Drain Ratings and Characteristics (Ta = 25°C)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	24	А
Forward voltage (diode)		V _{DSF}	$I_{DR} = 6 \text{ A}, \text{ V}_{GS} = 0 \text{ V}$			-1.2	V

TOSHIBA

TOSHIBA

₹

<u>_</u>

Drain current

Drain-source voltage V_{DS} (V)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.